New Radial Ply Tires for Motor Vehicles With a GVWR of 4 536 kg or Less

Publication Date: November 20, 2013
Effective Date: November 20, 2013
Mandatory Compliance Date: September 1, 2014

(Ce document est aussi disponible en français)
Introduction

As defined by section 12 of the Motor Vehicle Safety Act, a Technical Standards Document (TSD) is a document that reproduces an enactment of a foreign government (e.g. a Federal Motor Vehicle Safety Standard issued by the U.S. National Highway Traffic Safety Administration). According to the Act, the Motor Vehicle Tire Safety Regulations may alter or override some provisions contained in a TSD or specify additional requirements; consequently, it is advisable to read a TSD in conjunction with the Act and the Motor Vehicle Tire Safety Regulations. As a guide, where the corresponding Regulation contains additional requirements, footnotes indicate the amending subsection number.

TSDs are revised from time to time in order to incorporate amendments made to the reference document, at which time a Notice of Revision is published in the Canada Gazette, Part I. All TSDs are assigned a revision number, with “Revision 0” designating the original version.

Identification of Changes

In order to facilitate the incorporation of a TSD, certain non-technical changes may be made to the foreign enactment. These may include the deletion of words, phrases, figures, or sections that do not apply under the Act or Regulations, the conversion of imperial to metric units, the deletion of superseded dates, and minor changes of an editorial nature. Additions are underlined, and provisions that do not apply are stoked through. Where an entire section has been deleted, it is replaced by: “[CONTENT DELETED]”. Changes are also made where there is a reporting requirement or reference in the foreign enactment that does not apply in Canada. For example, the name and address of the United States Department of Transportation are replaced by those of the Department of Transport.

Effective Date and Mandatory Compliance Date

The effective date of a TSD is the date of publication of its incorporating regulation or of the notice of revision in the Canada Gazette, and the date as of which voluntary compliance is permitted. The mandatory compliance date is the date upon which compliance with the requirements of the TSD is obligatory. If the effective date and mandatory compliance date are different, manufacturers may follow the requirements that were in force before the effective date, or those of the TSD, until the mandatory compliance date.

In the case of an initial TSD, or when a TSD is revised and incorporated by reference by an amendment to the Regulations, the mandatory compliance date is as specified in the Regulations, and it may be the same as the effective date. When a TSD is revised with no corresponding changes to the incorporating Regulations, the mandatory compliance date is six months after the effective date.
Official Version of Technical Standards Documents

The PDF version is a replica of the TSD as published by the Department and is to be used for the purposes of legal interpretation and application.
Table of Contents

Introduction ... i

S1. Scope and purpose ... 1

S2. Application and incorporation by reference 1

S3. Definitions .. 1

S4. Tire and rim matching information 4

S5. General requirements .. 4

S5.1 Size and construction ... 4

S5.2 Performance requirements .. 4

S5.3 Test sample .. 4

S5.4 Treadwear indicators .. 5

S5.5 Tire markings .. 5

S6. Test procedures, conditions and performance requirements 7

S6.1 Tire dimensions ... 7

S6.2 High speed performance ... 9

S6.3 Tire endurance ... 10

S6.4 Low inflation pressure performance 12

S6.5 Tire strength ... 14

S6.6 Tubeless tire bead unseating resistance 15

S7. Phase-in schedule for tire markings 15
S1. Scope and purpose

This Technical Standards Document (TSD) standard specifies tire dimensions, test requirements, labeling requirements, and defines tire load ratings.

S2. Application and incorporation by reference

[CONTENT DELETED] For applicability, please see subsection 5(1) of the Motor Vehicle Tire Safety Regulations.

S3. Definitions

1 Bead means the part of the tire that is made of steel wires, wrapped or reinforced by ply cords and that is shaped to fit the rim. (Talon)

Bead separation means a breakdown of the bond between components in the bead. (Séparation du talon)

1 Bias ply tire means a pneumatic tire in which the ply cords that extend to the beads are laid at alternate angles substantially less than 90 degrees to the centerline of the tread. (Pneu à carcasse diagonale)

Carcass means the tire structure, except tread and sidewall rubber which, when inflated, bears the load. (Carcasse)

Chunking means the breaking away of pieces of the tread or sidewall. (Arrachement)

Cord means the strands forming the plies in the tire. (Câblé)

Cord separation means the parting of cords from adjacent rubber compounds. (Séparation de câblés)

Cracking means any parting within the tread, sidewall, or innerliner of the tire extending to cord material. (Fissuration)

Extra load tire means a tire designed to operate at higher loads and higher inflation pressure than the corresponding standard tire. (Pneu à charge supplémentaire)

Groove means the space between two adjacent tread ribs. (Sillon)

Innerliner means the layer(s) forming the inside surface of a tubeless tire that contains the inflating medium within the tire. (Calandrage intérieur)

1 Please see subsection 1(1) of the Motor Vehicle Tire Safety Regulations (MVTSR) for the applicable definition.
Innerliner separation means the parting of the innerliner from cord material in the carcass.
(Séparation du calandrage intérieur)

2 **Light-truck tire** or **LT tire** Light truck (LT) tire means a tire designated by its manufacturer as primarily intended for use on lightweight trucks or multipurpose passenger vehicles.
(Pneu pour camion léger)

3 **Load rating** means the maximum load that a tire is rated to carry for a given inflation pressure.
(Charge nominale)

3 **Maximum load rating** means the load rating for a tire at the maximum permissible inflation pressure for that tire.
(Limite de charge nominale)

3 **Maximum permissible inflation pressure** means the maximum cold inflation pressure to which a tire may be inflated.
(Pression maximale permise de gonflage)

Measuring rim means the rim on which a tire is fitted for physical dimension requirements.
(Jante de mesure)

Open splice means any parting at any junction of tread, sidewall, or innerliner that extends to cord material.
(Séparation de soudure)

Outer diameter means the overall diameter of an inflated new tire.
(Diamètre extérieur)

Overall width means the linear distance between the exteriors of the sidewalls of an inflated tire, including elevations due to labeling, decoration, or protective bands or ribs.
(Largeur hors tout)

2 **Passenger car tire** means a tire intended for use on passenger cars, multi-purpose passenger vehicles, and trucks that have a gross vehicle weight rating (GVWR) of 4,536 kg (10,000 lb.) or less.
(Pneu pour voiture de tourisme)

4 **Ply** means a layer of rubber-coated parallel cords.
(Pli)

Ply separation means a parting of rubber compound between adjacent plies.
(Décollement entre nappes)

Tire Pneumatic tire means a mechanical device made of rubber, chemicals, fabric and steel or other materials, that, when mounted on an automotive wheel, provides the traction and contains the gas or fluid that sustains the load.
(Pneu)

4 **Radial ply tire** means a pneumatic tire in which the ply cords that extend to the beads are laid at substantially 90 degrees to the centerline of the tread.
(Pneu à carcasse radiale)

2 Please see subsection 2(1) of the Motor Vehicle Safety Regulations (MVSR) for the applicable definition.

3 Please see subsection 1(1) of the MVTSR for the applicable definition.

4 Please see subsection 1(1) of the MVTSR for the applicable definition.
Reinforced tire means a tire designed to operate at higher loads and at higher inflation pressures than the corresponding standard tire. *(Pneu renforcé)*

4 Rim means a metal support for a tire or a tire and tube assembly upon which the tire beads are seated. *(Jante)*

Section width means the linear distance between the exteriors of the sidewalls of an inflated tire, excluding elevations due to labeling, decoration, or protective bands. *(Grosseur du boudin)*

4 Sidewall means that portion of a tire between the tread and bead. *(Flanc)*

Sidewall separation means the parting of the rubber compound from the cord material in the sidewall. *(Séparation des flancs)*

5 Winter tire Snow tire means a tire that attains a traction index equal to or greater than 110, compared to the ASTM E-1136 Standard Reference Test Tire when using the snow traction test as described in ASTM F-1805-00, Standard Test Method for Single Wheel Driving Traction in a Straight Line on Snow and Ice-Covered Surfaces, and which is marked with an Alpine Symbol specified in S5.5(i) on at least one sidewall. *(Pneu d’hiver)*

Test rim means the rim on which a tire is fitted for testing, which may be any rim listed as appropriate for use with that tire. *(Jante d’essai)*

4 Tread means that portion of a tire that comes into contact with the road. *(Bande de roulement)*

Tread rib means a tread section running circumferentially around a tire. *(Nervure de la bande de roulement)*

Tread separation means pulling away of the tread from the tire carcass. *(Séparation de la bande de roulement)*

Treadwear indicators (TWI) means the projections within the principal grooves designed to give a visual indication of the degrees of wear of the tread. *(Indicateurs d’usure)*

Wheel-holding fixture means the fixture used to hold the wheel and tire assembly securely during testing. *(Appareil de soutien de la roue)*

Please see subsection 5(4) of the MVTSR for the applicable definition.
S4. Tire and rim matching information

[CONTENT DELETED] Please see section 8 of the Motor Vehicle Tire Safety Regulations (MVTSR) for the applicable requirements.

S5. General requirements

S5.1 Size and construction

Each tire shall fit each rim specified for its size designation in accordance with subsection 8(1) of the MVTSR S4.1.

S5.2 Performance requirements

Each tire shall conform to each of the following:

(a) It shall meet the requirements specified in S6 for its tire size designation, type, and maximum permissible inflation pressure.

(b) It shall meet each of the applicable requirements set forth in paragraphs (c) and (d) of this S5.2 when mounted on a model rim assembly corresponding to any rim designated by the tire manufacturer for use with the tire in accordance with subsection 8(1) of the MVTSR S4.

(c) Its maximum permissible inflation pressure shall be 240, 280, 300, 340, or 350 kPa.

(d) Its load rating shall be that specified either in a submission made by an individual manufacturer, pursuant to subsection 8(1) of the MVTSR S4, or in one of the publications described in subsection 8(2) of the MVTSR S4 for its size designation, type, and each appropriate inflation pressure. If the maximum load rating for a particular tire size is shown in more than one of the publications described in subsection 8(2) of the MVTSR S4, each tire of that size designation shall have a maximum load rating that is not less than the published maximum load rating, or if there are differing maximum load ratings for the same tire size designation, not less than the lowest published maximum load rating.

S5.3 Test sample

For the tests specified in S6, use:

(a) One tire for high speed;

(b) Another tire for endurance and low inflation pressure performance; and

(c) A third tire for physical dimensions, resistance to bead unseating, and strength, in sequence.

Effective: November 20, 2013
S5.4 Treadwear indicators

Except in the case of tires with a 305 mm (12-inch) or smaller rim diameter, each tire shall have not less than six treadwear indicators spaced approximately equally around the circumference of the tire that enable a person inspecting the tire to determine visually whether the tire has worn to a tread depth of 1.6 mm (one-sixteenth of an inch). Tires with a 305 mm (12-inch) or smaller rim diameter shall have not less than three such treadwear indicators.

S5.5 Tire markings

Except as specified in paragraphs (a) through (i) of S5.5, each tire must be marked on each sidewall with the information specified in S5.5(a) through (d) and on one sidewall with the information specified in S5.5(e) through (i) according to the phase-in schedule specified in S7 of this standard. The markings must be placed between the maximum section width and the bead on at least one sidewall, unless the maximum section width of the tire is located in an area that is not more than one-fourth of the distance from the bead to the shoulder of the tire. If the maximum section width falls within that area, those markings must appear between the bead and a point one-half the distance from the bead to the shoulder of the tire, on at least one sidewall. The markings must be in letters and numerals not less than 2 mm (0.078 inches) high and raised above or sunk below the tire surface not less than 0.4 mm (0.015 inch).

(a) The symbol DOT, which constitutes a certification that the tire conforms to applicable Federal motor vehicle safety standards; ⁶

(b) The tire size designation as listed in the documents and publications specified in section 8 of the MVTSR §4.1.1 of this standard;

(c) The maximum permissible inflation pressure, subject to the limitations of S5.5.4 through S5.5.6 of this TSD standard; ⁷

(d) The maximum load rating⁸ and for LT tires, the letter designating the tire load range;

(e) The generic name of each cord material used in the plies (both sidewall and tread area) of the tire;

(f) The actual number of plies in the sidewall and the actual number of plies in the tread area, if different;

(g) The term “tubeless” or “tube type,” as applicable;

⁶ Please see section 7 of the MVTSR for the applicable requirements.

⁷ Please see subsection 5(2) of the MVTSR for additional requirements.

⁸ Please see subsection 5(3) of the MVTSR for additional requirements.
(h) The word “radial,” if the tire is a radial ply tire; and

(i) Alpine Symbol. A tire meeting the definition of a winter tire snow tire, as defined in paragraph S3 may, at the option of the manufacturer, show the pictograph of a mountain with a snowflake as shown below. If the manufacturer chooses to mark the winter tire snow tire with the alpine symbol, the mountain profile must have a minimum base of 15 mm and a minimum height of 15 mm, and must contain three peaks with the middle peak being the tallest. Inside the mountain, there must be a six-sided snowflake having a minimum height of one-half the tallest peak.

\[\text{Alpine symbol image}\]

S5.5.1 Tire identification number

(a) Tires manufactured before September 1, 2009. Each tire must be labeled with the tire identification number required by 49 CFR part 574 on a sidewall of the tire. Except for retreaded tires, either the tire identification number or a partial tire identification number, containing all characters in the tire identification number, except for the date code and, at the discretion of the manufacturer, any optional code, must be labeled on the other sidewall of the tire.

(b) Tires manufactured on or after September 1, 2009. Each tire must be labeled with the tire identification number required by section 6 of the MVTSR 49 CFR part 574 on the intended outboard sidewall of the tire. Except for retreaded tires, either the tire identification number or a partial tire identification number, containing all characters in the tire identification number, except for the date code and, at the discretion of the manufacturer, any optional code, must be labeled on the other sidewall of the tire. Except for retreaded tires, if a tire does not have an intended outboard sidewall, the tire must be labeled with the tire identification number required by section 6 of the MVTSR 49 CFR part 574 on one sidewall and with either the tire identification number or a partial tire identification number, containing all characters in the tire identification number, except for the date code and, at the discretion of the manufacturer, any optional code, on the other sidewall.

S5.5.2 [Reserved]

S5.5.3 Each tire must be labeled with the name of the manufacturer, or brand name and number assigned to the manufacturer in the manner specified in section 6 of the MVTSR 49 CFR part 574.
S5.5.4 For passenger car tires, if the maximum inflation pressure of a tire is 240, 280, 300, 340, or 350, then:

(a) Each marking of that inflation pressure pursuant to S5.5(c) must be followed in parenthesis by the equivalent psi, rounded to the next higher whole number; and

(b) Each marking of the tire’s maximum load rating pursuant to S5.5(d) in kilograms must be followed in parenthesis by the equivalent load rating in pounds, rounded to the nearest whole number.

S5.5.5 If the maximum inflation pressure of a tire is 420 kPa (60 psi), the tire must have permanently moulded into or onto both sidewalls, in letters and numerals not less than 12.7 mm (½ inch) high, the words “Inflate to 60 psi” or “Inflate to 420 kPa (60 psi)”. On both sidewalls, the words must be positioned in an area between the tire shoulder and the bead of the tire. However, the words must be also positioned on the tire so that they are not obstructed by the flange of any rim designated for use with that tire in this TSD or in TSD 110 standard or in Standard No. 110 (Sec. 571.110 of this part).

S5.5.6 For LT tires, the maximum permissible inflation pressure shown must be the inflation pressure that corresponds to the maximum load of the tire for the tire size as specified in one of the publications described in subsection 8(2) of the MVTSR S4.1.1.(b) of Sec. 571.139. At the manufacturer’s option, the shown inflation pressure may be as much as 69 kPa (10 psi) greater than the inflation pressure corresponding to the specified maximum load.

S6. Test procedures, conditions and performance requirements

Each tire shall meet all of the applicable requirements of this section when tested according to the conditions and procedures set forth in S5 and S6.1 through S6.6.

S6.1 Tire dimensions

S6.1.1 Test conditions and procedures

S6.1.1.1 Tire preparation

S6.1.1.1.1 Mount the tire on the measuring rim specified by the tire manufacturer or in one of the publications listed in section 8 of the MVTSR S4.1.1.

S6.1.1.2 For passenger car tires, inflate to the pressure specified in the following table:

<table>
<thead>
<tr>
<th>Inflation pressure (kPa)</th>
<th>Standard</th>
<th>Reinforced</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>220</td>
<td></td>
</tr>
</tbody>
</table>

Effective: November 20, 2013
S6.1.1.1.3 In the case of a LT tire, inflate it to the pressure at maximum load as labeled on the sidewall.

S6.1.1.1.4 Condition the assembly at an ambient room temperature of 20°C to 30°C for not less than 24 hours.

S6.1.1.1.5 Readjust the tire pressure to that specified in S6.1.1.1.2 or in S6.1.1.1.3, as applicable.

S6.1.1.2 Test procedure

S6.1.1.2.1 Measure the section width and overall width by caliper at six points approximately equally spaced around the circumference of the tire, avoiding measurement of the additional thickness of the special protective ribs or bands. The averages of the measurements so obtained are taken as the section width and overall width, respectively.

S6.1.1.2.2 Determine the outer diameter by measuring the maximum circumference of the tire and dividing the figure so obtained by Pi (3.14).

S6.1.2 Performance requirements

The actual section width and overall width for each tire, measured in accordance with S6.1.1.2, shall not exceed the section width and overall width specified in a submission made by an individual manufacturer, pursuant to subsection 8(1) of the MVTSR S4.1.1(a), or in one of the publications described in subsection 8(2) of the MVTSR S4.1.1(b), for its size designation and type by more than:

(a) (For tires with a maximum permissible inflation pressure of 220, 250, or 275 kPa (32, 36, or 40 psi) 7 percent, or

(b) (For tires with a maximum permissible inflation pressure of 240, 280, 300, 340, or 350 kPa) 7 percent or 10 mm (0.4 inches), whichever is larger.
S6.2 High speed performance

S6.2.1 Test conditions and procedures

S6.2.1.1 Preparation of tire

S6.2.1.1.1 Mount the tire on a test rim and inflate it to the pressure specified for the tire in the following table:

<table>
<thead>
<tr>
<th>Tire application</th>
<th>Test pressure (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger car tires</td>
<td></td>
</tr>
<tr>
<td>Standard load</td>
<td>220</td>
</tr>
<tr>
<td>Extra load</td>
<td>260</td>
</tr>
<tr>
<td>Load Range C</td>
<td>320</td>
</tr>
<tr>
<td>Load Range D</td>
<td>410</td>
</tr>
<tr>
<td>Load Range E</td>
<td>500</td>
</tr>
<tr>
<td>Light-truck tires</td>
<td>Light truck tires with a nominal cross section > 295 mm (11.5 inches)</td>
</tr>
<tr>
<td>Load Range C</td>
<td>230</td>
</tr>
<tr>
<td>Load Range D</td>
<td>320</td>
</tr>
<tr>
<td>Load Range E</td>
<td>410</td>
</tr>
</tbody>
</table>

S6.2.1.1.2 Condition the assembly at 32°C to 38°C for not less than 3 hours.

S6.2.1.1.3 Before or after mounting the assembly on a test axle, readjust the tire pressure to that specified in S6.2.1.1.1.

S6.2.1.2 Test procedure

S6.2.1.2.1 Press the assembly against the outer face of a test drum with a diameter of 1.70 m ± 1%.

S6.2.1.2.2 Apply to the test axle a load equal to 85% of the tire’s maximum load carrying capacity.

S6.2.1.2.3 Break in the tire by running it for 2 hours at 80 km/h.

S6.2.1.2.4 Allow tire to cool to 38°C and readjust inflation pressure to applicable pressure in 6.2.1.1.1 immediately before the test.
S6.2.1.2.5 Throughout the test, the inflation pressure is not corrected and the test load is maintained at the value applied in S6.2.1.2.

S6.2.1.2.6 During the test, the ambient temperature, measured at a distance of not less than 150 mm and not more than 1 m from the tire, is maintained at not less than 32°C or more than 38°C.

S6.2.1.2.7 The test is conducted, continuously and uninterrupted, for ninety minutes through three thirty-minute consecutive test stages at the following speeds: 140, 150, and 160 km/h.

S6.2.1.2.8 Allow the tire to cool for between 15 minutes and 25 minutes. Measure its inflation pressure. Then, deflate the tire, remove it from the test rim, and inspect it for the conditions specified in S6.2.2(a).

S6.2.2 Performance requirements

When the tire is tested in accordance with S6.2.1:

(a) There shall be no visual evidence of tread, sidewall, ply, cord, innerliner, belt or bead separation, chunking, open splices, cracking, or broken cords.

(b) The tire pressure, when measured at any time between 15 minutes and 25 minutes after the end of the test, shall not be less than 95% of the initial pressure specified in S6.2.1.1.1.

S6.3 Tire endurance

S6.3.1 Test conditions and procedures

S6.3.1.1 Preparation of tire
S6.3.1.1.1 Mount the tire on a test rim and inflate it to the pressure specified for the tire in the following table:

<table>
<thead>
<tr>
<th>Tire application</th>
<th>Test pressure (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger car tires</td>
<td></td>
</tr>
<tr>
<td>Standard load</td>
<td>180</td>
</tr>
<tr>
<td>Extra load</td>
<td>220</td>
</tr>
<tr>
<td>Load Range C</td>
<td>260</td>
</tr>
<tr>
<td>Load Range D</td>
<td>340</td>
</tr>
<tr>
<td>Load Range E</td>
<td>410</td>
</tr>
<tr>
<td>Light-truck tires</td>
<td>Light-truck tires with a nominal cross section > 295 mm (11.5 inches)</td>
</tr>
<tr>
<td>Load Range C</td>
<td>190</td>
</tr>
<tr>
<td>Load Range D</td>
<td>260</td>
</tr>
<tr>
<td>Load Range E</td>
<td>340</td>
</tr>
</tbody>
</table>

S6.3.1.1.2 Condition the assembly at 32°C to 38°C for not less than 3 hours.

S6.3.1.1.3 Readjust the pressure to the value specified in S6.3.1.1.1 immediately before testing.

S6.3.1.2 Test procedure

S6.3.1.2.1 Mount the assembly on a test axle and press it against the outer face of a smooth wheel having a diameter of 1.70 m ± 1%.

S6.3.1.2.2 During the test, the ambient temperature, measured at a distance of not less than 150 mm and not more than 1 m from the tire, is maintained at not less than 32°C or more than 38°C.

S6.3.1.2.3 Conduct the test, without interruption, at the test speed of not less than 120 km/h with loads and test periods not less than those shown in the following table. For winter tires snow tires, conduct the test at not less than 110 km/h.
<table>
<thead>
<tr>
<th>Test period</th>
<th>Duration (hours)</th>
<th>Load as a percentage of tire maximum load rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>100</td>
</tr>
</tbody>
</table>

S6.3.1.2.4 Throughout the test, the inflation pressure is not corrected and the test loads are maintained at the value corresponding to each test period, as shown in the table in S6.3.1.2.3.

S6.3.1.2.5 Allow the tire to cool for between 15 minutes and 25 minutes after running the tire for the time specified in the table in S6.3.1.2.3. Measure its inflation pressure. Inspect the tire externally on the test rim for the conditions specified in S6.3.2(a).

S6.3.2 Performance requirements

When the tire is tested in accordance with S6.3.1:

(a) There shall be no visual evidence of tread, sidewall, ply, cord, belt or bead separation, chunking, open splices, cracking, or broken cords.

(b) The tire pressure, when measured at any time between 15 minutes and 25 minutes after the end of the test, shall not be less than 95% of the initial pressure specified in S6.3.1.1.1.

S6.4 Low inflation pressure performance

S6.4.1 Test conditions and procedures

S6.4.1.1 Preparation of tire
S6.4.1.1.1 This test is conducted following completion of the tire endurance test using the same tire and rim assembly tested in accordance with S6.3 with the tire deflated to the following appropriate pressure:

<table>
<thead>
<tr>
<th>Tire application</th>
<th>Test pressure (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger car tires</td>
<td></td>
</tr>
<tr>
<td>Standard load</td>
<td>140</td>
</tr>
<tr>
<td>Extra load</td>
<td>160</td>
</tr>
<tr>
<td>Load Range C</td>
<td>200</td>
</tr>
<tr>
<td>Load Range D</td>
<td>260</td>
</tr>
<tr>
<td>Load Range E</td>
<td>320</td>
</tr>
<tr>
<td>Light-Truck Tires</td>
<td>Light-Truck Tires</td>
</tr>
<tr>
<td>Light-Truck Tires with a nominal cross section > 295 mm (11.5 inches)</td>
<td></td>
</tr>
<tr>
<td>Load Range C</td>
<td>150</td>
</tr>
<tr>
<td>Load Range D</td>
<td>200</td>
</tr>
<tr>
<td>Load Range E</td>
<td>260</td>
</tr>
</tbody>
</table>

S6.4.1.1.2 After the tire is deflated to the appropriate test pressure in S6.4.1.1.1 at the completion of the endurance test, condition the assembly at 32°C to 38°C for not less than 2 hours.

S6.4.1.1.3 Before or after mounting the assembly on a test axle, readjust the tire pressure to that specified in S6.4.1.1.1.
S6.4.1.2 Test procedure

S6.4.1.2.1 The test is conducted for ninety minutes at the end of the test specified in S6.3, continuously and uninterrupted, at a speed of 120 km/h (75 mph). For winter tires snow tires, conduct the test at not less than 110 km/h.

S6.4.1.2.2 Press the assembly against the outer face of a test drum with a diameter of 1.70 m ± 1%.

S6.4.1.2.3 Apply to the test axle a load equal to 100% of the tire’s maximum load carrying capacity.

S6.4.1.2.4 Throughout the test, the inflation pressure is not corrected and the test load is maintained at the initial level.

S6.4.1.2.5 During the test, the ambient temperature, measured at a distance of not less than 150 mm and not more than 1 m from the tire, is maintained at not less than 32°C or more than 38°C.

S6.4.1.2.6 Allow the tire to cool for between 15 minutes and 25 minutes. Measure its inflation pressure. Then, deflate the tire, remove it from the test rim, and inspect it for the conditions specified in S6.4.2(a).

S6.4.2 Performance requirements

When the tire is tested in accordance with S6.4.1:

(a) There shall be no visual evidence of tread, sidewall, ply, cord, innerliner, belt or bead separation, chunking, open splices, cracking, or broken cords, and

(b) The tire pressure, when measured at any time between 15 minutes and 25 minutes after the end of the test, shall not be less than 95% of the initial pressure specified in S6.4.1.1.1.

S6.5 Tire strength

S6.5.1 Tire strength for passenger car tires. Each tire shall comply with the requirements of S5.3 of TSD 109 Sec. 571.109.

S6.5.2 Tire strength for LT tires. Each tire shall comply with the requirements of S7.3 of TSD 119 Sec. 571.119.
S6.6 Tubeless tire bead unseating resistance

Each tire shall comply with the requirements of S5.2 of TSD 109 See. S7.109. For light-truck tires, the maximum permissible inflation pressure to be used for the bead unseating test is as follows:

<table>
<thead>
<tr>
<th>Load Range</th>
<th>Pressure (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>260</td>
</tr>
<tr>
<td>D</td>
<td>340</td>
</tr>
<tr>
<td>E</td>
<td>410</td>
</tr>
</tbody>
</table>

For light-truck tires with a nominal cross-section greater than 295 mm (11.5 inches), the maximum permissible inflation pressure to be used for the bead unseating test is as follows:

<table>
<thead>
<tr>
<th>Load Range</th>
<th>Pressure (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>190</td>
</tr>
<tr>
<td>D</td>
<td>260</td>
</tr>
<tr>
<td>E</td>
<td>340</td>
</tr>
</tbody>
</table>

S7. Phase-in schedule for tire markings

[CONTENT DELETED]